What we actually do

The main areas of our research are: DNA sequencing and assembling (including design of algorithms for the NGS sequencers); protein structure analysis; RNA structure analysis and prediction (including automatic tertiary structure prediction tool); nanotechnology and DNA computing.

Phylogenetic Trees
One of the most important aspect of molecular and computational biology is the reconstruction of evolutionary relationships. The area is well explored after decades of intensive research. Despite this fact there remains a need for good and efficient algorithms that are capable of reconstructing the evolutionary relationship in reasonable time.
Since the problem is computationally intractable, exact algorithms are used only for small groups of species. In the Maximum Parsimony approach the time of computation grows so fast when number of sequences increases, that in practice it is possible to find the optimal solution for instances containing about 20 sequences only. It is this reason that in practical applications, heuristic methods are used.

In our laboratory we have developed parallel adaptive memory programming algorithms based on Maximum Parsimony and some known neighborhood search methods for phylogenetic tree construction. The proposed algorithms achieve a superlinear speedup and find solutions of good quality.